
Journal of Computational Physics172,718–738 (2001)

doi:10.1006/jcph.2001.6853, available online at http://www.idealibrary.com on

An Efficient Implicit Discontinuous Spectral
Galerkin Method

Patrick Rasetarinera and M. Y. Hussaini

School of Computational Science and Information Technology, The Florida State University,
Tallahassee, Florida 32306-4120

E-mail: rasetari@csit.fsu.edu; myh@csit.fsu.edu

Received August 14, 2000; revised May 25, 2001

The present paper discusses an implicit discontinuous spectral Galerkin method
for the solution of the compressible Euler equations. A matrix-free Newton–Krylov–
Schwarz algorithm with one-level and two-level nonoverlapping Schwarz precon-
ditioners is used to solve the implicit systems. The study shows that this method
is a factor of 50 faster than an explicit method that employs local time-stepping
to accelerate convergence to steady-state solution. Procedures using LU-SGS pre-
conditioner appear to provide the best performance. The two-level procedure is
found necessary for relatively fast convergence in the case of large numbers of mesh
elements. c© 2001 Academic Press

Key Words: discontinuous Galerkin method; implicit method; matrix-free;
Newton–Krylov–Schwarz.

1. INTRODUCTION

The discontinuous Galerkin method has recently become popular for the solution of
systems of conservation laws. In its original formulation for the discretization of the neutron
transport equation resulting from Reed and Hill [19], the solution is computed element by
element. This is not obviously possible for nonlinear problems, and these problems can be
treated by a discontinuous space-time discretization (leading to a global system of nonlinear
algebraic equations); see Bar–Yoseph [1] and Bar–Yoseph and Elata [2]. For computational
ease, a frequently adopted approach employs explicit time discretization. The so-called
Runge–Kutta discontinuous Galerkin (RKDG) method introduced by Cockburn and Shu
[6] uses a total variation diminishing (TVD) Runge–Kutta scheme developed by Shu and
Osher [21]. The time step is then limited by a (linear) stability condition that depends on the
order of the Runge–Kutta method and on the order of the spatial discretization. The RKDG
method is easy to implement and has been successfully applied to a wide range of unsteady
problems [8, 11, 17, 18]. For steady-state computation, a common procedure uses a local

718

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.

IMPLICIT DISCONTINUOUS GALERKIN METHOD 719

time-stepping technique to accelerate convergence. However, the maximum time step is
still limited by a local stability condition. Thus, the convergence may become dramatically
slow for large-scale simulations.

Implicit solvers, which do allow large time steps, are widely used in the computational
fluid dynamics community for the steady solution of nonlinear conservation laws [10].
Using finite-volume or finite-element discretizations, these solvers generally rely on some
linearization of a nonlinear operator, which leads to a Newton-like method. Iterative methods
and approximate factorization methods are then used to solve the linear system.

The Newton–Krylov–Schwarz method has recently emerged as a promising technique
for the parallel implicit solution of large-scale aerodynamics problems [13]. It combines the
Newton–Krylov method as the nonlinear solver and the Krylov–Schwarz iterative method
for the solution of the linear system arising from the Newton linearization. The Krylov–
Schwarz method has become popular especially in parallel computing because of its locality.
It is specially well suited for the discontinuous spectral Galerkin method, since each sub-
domain can be treated separately.

In [3] Bassi and Rebay show the efficiency of the generalized minimum residual iterative
method (GMRES) [20] using a simple block Jacobi preconditioner for the implicit solution
of the compressible Navier–Stokes equations. In this work, we propose a “matrix-free”
Newton–Krylov–Schwarz algorithm for the implicit discretization of the discontinuous
Galerkin method. In the “matrix-free” approach, the Jacobian-vector product within the
Krylov algorithm is approximated by the Frechet derivative [4]. This permits consider-
able saving in storage. One-level and two-level, additive and multiplicative nonoverlapping
Schwarz preconditioners are implemented and compared.

2. DISCONTINUOUS GALERKIN METHOD

Consider a conservation equation for a quantityu in a two-dimensional regionD

∂u
∂t
+∇ · F(u) = 0, (1)

whereF = (F,G)t is a flux vector. Let the domainD be partitioned intoNe nonoverlapping
subdomains, or elements,Di . The discontinuous Galerkin method is a finite-element method
in which the approximation space,Vh, may be discontinuous across element interfaces. In
the semi-discrete formulation,Vh contains only spatial functions

Vh = {v ∈ L1(D) : v |Di ∈ P(Di), i = 1, . . . ,Ne},

whereP(Di) is a polynomial space defined onDi . The degrees of freedom of the solution
are then obtained by solving a weak formulation of (1).

LetBi = {vi
`}`=0,...,N−1 be a local basis set such that

Span(Bi) = P(Di), Supp
(
vi
`

) = Di , ` = 0, . . . , N − 1.

Then the approximate solutionuh satisfies∫
Di

(
∂uh

∂t
+∇ · F(uh)

)
v dx = 0, ∀v ∈ Bi (2)

720 RASETARINERA AND HUSSAINI

in each elementDi . Using Green’s formula, Eq. (2) is recast as∫
Di

∂uh

∂t
v− F(uh) · ∇v dx+

∑
j

∫
∂Di j

F(uh) · n v ds= 0, ∀v ∈ Bi , (3)

where∂Di is the boundary ofDi andn denotes the unit outward normal vector. Since the
data is discontinuous across the interface of contiguous domains, two values ofuh(ui

h inside
Di andui

h outsideDi) are available at the interface. A numerical fluxFnum is then used to
evaluate the interface flux in the last integral of the Eq. (3)

F(uh) · n|∂Di = Fnum
(
ui

h, u
j
h, n
)
. (4)

3. IMPLICIT TIME DISCRETIZATION

We discuss here an implicit algorithm based on the backward Euler time integration
scheme. Although it is unconditionally stable, it is time-accurate only if its time step re-
solves the temporal scales of the problem. The temporal accuracy requirements in most
aerodynamic flows are far less stringent than the stability limit of most popular time dis-
cretization schemes. In such cases, the present algorithm becomes highly competitive in
that it permits relatively large time steps although constrained by the characteristic time
scale of the problem. This advantage is lost in the case of direct numerical simulation of
transitional and turbulent flows where the constraints of time scales that need to be resolved
are more stringent than the stability limit. This advantage can be exploited to the utmost
in the case of steady flows, which is the focus of the present work. A naive way to find a
steady-state solution is to compute a time-accurate process to the point where all transient
effects have disppeared, assuming of course they do. An expedient way is to compute a
time-like process wherein the time path is not necessarily physical. Iterative or relaxation
techniques to solve the set of coupled equations resulting from the time-independent terms
and boundary conditions may be identified with this fictitious time scheme [14].

In this section, the backward Euler time integration is applied to (3) in the elementDi

wherein the solution is represented byui ,∫
Di

δun
i

δt
vi

l dx−
∫
Di

F
(
un

i + δun
i

) · ∇vi
l dx

+
∑

j

∫
∂Di j

Fnum
(
un

i + δun
i , u

n
j + δun

j , n
)

vi
l dσ = 0, l = 0, . . . , N − 1, (5)

where the superscriptn indicates the time

δt = tn+1− tn and δun
i = un+1

i − un
i . (6)

Setting

F(ui + δui) = F(ui)+ A(ui)δui +O
(
δu2

i

)
and

Fnum(ui + δui , u j + δu j , n) = Fnum(ui , u j , n)+ A1
i j δui + A2

i j δu j +O(δ2)

IMPLICIT DISCONTINUOUS GALERKIN METHOD 721

with

A = ∂F(u)
∂u

, A1 = ∂Fnum(u, v, n)
∂u

, A2 = ∂Fnum(u, v, n)
∂v

,

A1
i j = A1(ui , u j , n), A2

i j = A2(ui , u j , n),

then dropping terms of second and higher order, (5) becomes∫
Di

δun
i

δt
vi

l dx−
∫
Di

A
(
un

i

) · δun
i · ∇vi

l dx

+
∑

j

∫
∂Di j

(
A1

i j δu
n
i + A2

i j δu
n
j

)
vi

l dσ = Ri,l (un), l = 0, . . . , N − 1, (7)

whereRi,l is the residual

Ri,l (un) =
∫
Di

F
(
un

i

) · ∇vi
l dx−

∑
j

∫
∂Di j

Fnum
(
un

i , u
n
j , n
)

vi
l dσ.

Now, let û = (û1, . . . , ûNe) with ûi = (ûi,0, . . . , ûi,N−1) be the global vector of expansion
coefficients foru = (u1, . . . ,uNe) such that

ui (x) =
N−1∑
l=0

ûi,l vi
l (x), i = 1, . . . ,Ne.

Then the scheme (7) can be written in the equivalent matrix form

M(un)δûn = R(un) (8)

with

M(un) = γ

δt
− ∂R(un)

∂û
,

where the matrixγ = diag(γ1, . . . , γNe) is the block diagonal mass matrix with

[γi]kl =
∫
Di

vi
kvi

l dx

andR(u) is the global vector of the residual

R(u) = (R1(u), . . . , RNe(u)), Ri (u) = (Ri,0(u), . . . , Ri,N−1(u)).

In steady-state computations, the left-hand side of (8) vanishes asδû tends to zero. The
spatial accuracy of the solution depends solely on the discretization of the residualR. In
the limit δt →∞ the scheme represented by (6), (8) reduces to a Newton iteration. To use
a large time step and attain quadratic convergence, the spatial discretization of the left-hand
side must be consistent with the discretization of the right-hand side.

722 RASETARINERA AND HUSSAINI

4. KRYLOV–SCHWARZ

We now address the solution of the linear system (8) that results from the Newton-like
algorithm. The nonsymmetric nature of the large sparse matrixM suggests the use of a
Krylov subspace based algorithm to solve (8). The key advantage of this method is that
information about the Jacobian matrix needs to be accessed only in the form of matrix–vector
products. As these products can be approximated using finite differences, the algorithm can
be implemented without forming the Jacobian matrix explicitly [4]:

∂R(u)
∂u

v̂ = R(u+ hv)− R(u)
h

. (9)

This implementation, termed “matrix-free,” yields a considerable saving in storage com-
pared to the standard implementation.

It has been implicitly assumed in the previous section that the numerical fluxFnum is
continuously differentiable. However, one can use the formula (9) to handle a continuous
but nondifferentiable flux such as the Roe flux, in which case it is found that the quadratic
convergence of the Newton method is lost.

The Krylov method employed in this work is the generalized minimum residual method
(GMRES) [20]. The parameterh in (9) is computed following Brown and Saad [4]
via

h =
√
ε

‖v‖22
max{utyp‖v‖1, |uTv|}sign(uTv),

whereε is the machine epsilon andutyp > 0 is a typical size of the components ofu provided
by the user. By default we setutyp = 10−8 in our computations.

4.1. Preconditioning

The matrixM is generally ill conditioned whenδt is large. When a polynomial basis of
degree at mostnp is used inVh, then the condition number of the advection operator on a
single element grows likenp

2 [5]. The use of a preconditionerP is thus necessary. Instead
of (8), we solve the system

P−1M(u)δû = P−1R(u), (10)

whereP is a nonsingular matrix.

Single-Level Preconditioner

We have implemented two preconditioners for the discontinuous spectral Galerkin
method. They are single-level preconditioners. The first corresponds to a block-diagonal
preconditioner and the second is related to LU-symmetric Gauss–Seidel (LU-SGS) precon-
ditioner.

Let us write the matrixM as M = L + D +U whereL is a block strictly lower tri-
angular matrix,U is a block strictly upper triangular matrix, andD is a block diago-
nal matrix, each withN × N square blocks. Each blocki of D represents the contri-
butions from the elementDi . The matrix vector productUδû = ([Uδû]1, . . . , [Uδû]Ne),

IMPLICIT DISCONTINUOUS GALERKIN METHOD 723

Lδû = ([Lδû]1, . . . , [Lδû]Ne) andDδû = ([Dδû]1, . . . , [Dδû]Ne) can be computed as

[Uδû] i =
∑

j>i

∫
∂Di j

vi
l A

2
i j δu j dσ

l=0,...,N−1

(11)

[Lδû] i =
∑

j<i

∫
∂Di j

vi
l A

2
i j δu j dσ

l=0,...,N−1

(12)

[Dδû] i =

∫
Di

δui

δt
vi

l dx−
∫
Di

A
(
un

i

) · δui · ∇vi
l dx

+
∑

j

∫
∂Di j

vi
l A

1
i j δui dσ

l=0,...,N−1.

(13)

A simple choice is

P = D. (14)

It corresponds to a block-diagonal preconditioner or a block-Jacobi preconditoner.
Another preconditioner [15]

P = (D + L)D−1(D +U) (15)

is the so called LU-symmetric Gauss–Seidel (LU-SGS) introduced by Jameson and Yoon
[12] for the implicit resolution of the Euler equation on structured meshes and extended
to unstructured meshes in [15]. The implementation of this preconditioner in the case of
the discontinuous Galerkin method is straightforward using Eqs. (11)–(13). Indeed, the
GMRES algorithm applied to (10) involves the solution of systems of the type

Pŷ = x̂,

which can be decomposed in two steps:

Forward sweep:

(D + L)ŷ∗ = x̂

Backward sweep:

(D +U)ŷ = Dŷ∗.

Note that there is no need to storeU andL since the forward and backward sweep can be
expressed as

ŷ∗i = D−1
i (x̂i − [L ŷ∗] i), i = 1, . . . ,Ne

ŷi = ŷ∗i − D−1
i [U ŷ] i , i = Ne, . . . ,1.

724 RASETARINERA AND HUSSAINI

Only the block diagonal matrixD−1 needs then to be stored. For both preconditioners, an
exactLU solver is used to computeD−1. In our implementation, we have also stored the
face values ofu to facilitate the efficient computation ofA2

i j in (11) and (12).
In general, the numerical fluxFnum is nonlinear and the JacobiansA1 andA2 are difficult

to compute. Since explicit forms of these Jacobians are only needed in the evaluation of the
preconditionerP, approximate Jacobians which are easier to calculate are used. However,
one should be careful in the choice of the JacobianA1 andA2 to avoid having a singular
preconditionerP whenδt →∞. One possibility is to take

A1
i j =

A(ui , n)+ |A(ui , n)|
2

, A2
i j =

A(u j , n)− |A(u j , n)|
2

, (16)

which guarantees a nonsingular matrixD if A is nonsingular. Furthermore, the nonnegativity
of the eigenvalues ofA1 and the nonpositivity of the eigenvalues ofA2 are important for
the efficiency of the preconditioner (15) as mentioned in [12].

Two-Level Preconditioner

The convergence rate of the single-level preconditioned method may deteriorate when
Ne becomes large, especially for the block Jacobi preconditioning, since information is
exchanged only between neighboring elements. This deterioration may be overcome by
introducing a coarse grid solver, which has a global communication among all elements.

Let VH denote the coarse grid space

VH =
{
v ∈ L1(D) : v |Dk ≡ constant, v |Dc

k ≡ 0, k = 1, . . . ,Ne
}
,

with I H the interpolation operator from the coarse grid to the fine grid

I H : VH → Vh

(I H uH)|Di = uH |Di

N−1∑
l=0

vi
l

γl

∫
Di

vi
l dx, ∀uH ∈ VH ,

andJH the restriction operator form the fine grid to the coarse grid

JH : Vh → VH

(JH uh)|Di =
1

|Di |
∫
Di

uh dx, ∀uh ∈ Vh,

with γl =
∫
Di
(vi

l)
2 dx. The coarse grid operatorMH associated withVH is obtained by

settingv = 1 in Eq (11)–(13). In fact,MH corresponds to the Jacobian form of a first-order
finite-volume discretization of (1). Keeping the same notation, a two-level preconditioner
P can be constructed as

P−1 = I H M−1
H JH + P1,

whereP1 is the single-level preconditioner (14) or (15).

IMPLICIT DISCONTINUOUS GALERKIN METHOD 725

5. SPACE DISCRETIZATION

Although the choice of basis functions does not affect the accuracy of the discontinuous
Galerkin method, it may greatly impact the implementation and the efficiency of the algo-
rithms described above. In particular, for a nonlinear flux, the formula (9) for the matrix
vector product involves several forward transforms from the Galerkin space to the physical
space at each iteration. This must be done efficiently in order to have an efficient method.
In this section, we describe a collocation form of the discontinuous Galerkin method on
quadrilateral elements, for which the transformation from the Galerkin space to the physical
space is the identity.

To evaluate Eq. (3), it is convenient to map the elementDi into the reference square
Ä̂ = [−1, 1]× [−1, 1]. Under such a mapping, Eq. (3) becomes

∀v ∈ Bi ,

∫ 1

−1

∫ 1

−1
vJ
∂ui

∂t
dξdη −

∫ 1

−1

∫ 1

−1
F̃(ui) · ∇ξηv dξdη

+
4∑

j=1

∫ 1

−1
F̃num(ui , u j , n̂ j)v ds= 0, (17)

where (ξ, η) are the local coordinates in̂Ä, n̂k is the outward normal vector of thekth face
of Ä̂ and

F̃ = (F̃, G̃)t , F̃ = yηF − xηG, G̃ = −yξ F + xξG, J(ξ, η) = xξ yη − xηyξ .

To compute the integral arising in (17) the Gauss quadrature rule is used,

n−1∑
k=0

f (xk) ωk =
∫ 1

−1
f (ξ) dξ, (18)

to replace the integral. Here, thexk are the Legendre–Gauss collocation nodes associated
with the weightsωk. The quadrature formula (18) is exact for polynomial functionf of
order up to 2n− 1. We refer to [5] for further details on the properties of the Legendre
polynomials.

For elements with straight sides, the JacobianJ is linear and the outward normal vectors
n̂k are constant along a face. The integrals in (17) are then evaluated exactly when the basis
functions are polynomials of degree at mostn− 1. According to Cockburn and Shu [7],
the formal order of accuracy of the approximation scheme is thenn. If the sides are curved,
however, the JacobianJ is a polynomial of order greater than 2 and an additional quadrature
error is incurred as the quadrature rule (18) is no longer exact.

For quadrilateral elements, a natural choice is to use tensor product basis functions. Using
Lagrange interpolating polynomials{Lk}k=0,...,n−1 of order less thann in the ξ direction
and Lagrange polynomials{Ll }l=0,...,m−1 of order less thanm in the η direction as basis
functions, the approximate solution inDi reads

ui (ξ, η) =
n−1∑
k=0

m−1∑
l=0

ukl Lk(ξ)Ll (η),

726 RASETARINERA AND HUSSAINI

where the Lagrange polynomials have nodes at the Legendre–Gauss quadrature points
and

ukl = ui (xk, yl).

With this choice of basis functions, the transformation operator from the Galerkin space to
physical space is the identity and the mass matrix is diagonal∫ 1

−1

∫ 1

−1
Li (ξ)Lk(ξ)L j (η)Ll (η) dξdη = δikδ j lωkωl ,

wherei, k = 0, . . . ,n− 1, j, l = 0, . . . ,m− 1.
In order to implement the method described in Section 4, it is convenient to write (17)

in a matrix form. LetW be the mass matrix,Dξ andDη be the differentiation matrix in
the ξ andη directions, respectively,J be the diagonal matrix whose entries are the va-
lues of the JacobianJ at the collocation points,I f j be the interpolation matrix on the
face j , andW j be the diagonal matrix whose entries are the integration weights on the
face j

{W}i+nj,k+nl = δikδ j lωkωl

{Dξ }i+nj,k+nl = δ j l L
′
k(ξi)

{Dη}i+nj,k+nl = δik L ′l (η j).

{I fα }i,k+nl = δik Ll
(−1α(α−1)/2+1

); α = 1, 3

{I fβ } j,k+nl = δ j l Lk
(−1β(β−1)/2+1

); β = 2, 4

{Wα}i,k = δikωk; α = 1, 3

{Wβ} j,l = δ j lωl ; β = 2, 4

with i, k = 0, . . . ,n− 1; j, l = 0, . . . ,m− 1. Then we can write the Eq. (17) in the matrix
form

WJ
∂ui

∂t
− (Dt

ξ F̃ + Dt
ηG̃
)
Wu i +

4∑
j=1

I t
f j

W j F̃numj = 0,

whereF̃numj is the vector of the numerical flux at the facej . Using the same notation, the
ith diagonal block of the matrixD in the preconditioners (14) and (15) reads

Di =WJ − (Dt
ξ Ã+ Dt

η B̃
)
W +

4∑
j=1

I t
f j

Ã1
i j W j I f j

with

Ã = ∂ F̃(u)
∂u
; B̃ = ∂G̃(u)

∂u
; Ã1

i j =
∂ F̃numj

∂u
.

The obvious advantage of using Lagrange basis functions is that the expansion coeffi-
cients of the approximate solution coincide with their nodal values at the quadrature points.
Therefore, the evaluation of nonlinear functions at the quadrature points is straightforward.

IMPLICIT DISCONTINUOUS GALERKIN METHOD 727

6. NUMERICAL RESULTS

We now present numerical results from the computation of the two-dimensional steady-
state compressible inviscid flows governed by the Euler equations (in conservative
form)

∂u
∂t
+ ∂F

∂x
+ ∂G

∂y
= 0,

with

u =

ρ

ρu
ρv

E

 , F(u) =

ρu

ρu2+ p
ρuv

u(E + p)

 , G(u) =

ρv

ρuv

ρv2+ p

v(E + p)

 .
In most of the numerical tests performed, we compare the implicit method to the explicit
method in order to emphasize the efficiency. The explicit method uses a second-order
Runge–Kutta time discretization with a local time-stepping technique. We use the Osher
approximate Riemman solver as the numerical fluxFnum. The simple Steger–Warming split-
ting [22], which coincides with (16), is used as the approximate Jacobian when constructing
the preconditionerP.

All computations are started with uniform flow and CFL number unity unless specified
otherwise. In order to advance the solution to steady-state, the time step is updated adaptively
using the “switched evolution relaxation” (SER) method [16], where the CFL number is
increased in inverse proportion to the residual reduction:

CFLn = Min(CFLn−1, 106)
‖R(un−1)‖
‖R(un)‖ .

Since the storage requirements of GMRES increase linearly with the number of search
directions in the Krylov subspace, the GMRES is terminated when the size of the Krylov
subspace is equal to a parameterm. GMRES is then restarted using the most recent solution
as the initial guess. This is known as the restarted GMRES algorithm. In general,m is
chosen between 5 and 30 [20].

The choice of an optimal parameterm to restart GMRES depends on the problem and
on the order of the solution technique. For the discontinuous spectral Galerkin method,
the condition number of the preconditioned matrix degrades as the order of the method
increases. In order to use a fixed parameterm that accommodates different orders of ap-
proximation in the numerical tests, we findm= 30 in our computations to be optimal in
a sense.

The GMRES iterations are also terminated when the residual norm reaches an exit toler-
anceβ that depends on the residualR(un) at each Newton step:

β = 0.01‖R(un)‖. (19)

The Newton correction is then solved only approximately leading to the so-called “inexact
Newton methods” [9].

The computations were performed on an SGI origin 200 (180 Mhz R10000 CPU with
32 kbytes of primary cache and 2Mbytes of secondary cache).

728 RASETARINERA AND HUSSAINI

6.1. Subsonic Flow in a Channel with a Circular Bump

The first test is that of a Mach 0.2 subsonic flow over a circular bump in a channel.
The computations are performed on a coarse grid containing 70 elements and on a fine
grid consisting of 264 elements. The coarse grid geometry and collocation points for fifth-
order spatial discretization are shown in Fig. 1, along with the contours of computed Mach
number.

Figure 2 displays comparisons of the convergence histories among the implicit schemes
with fifth-, sixth-, and seventh-order spatial discretization on the coarse grid. We note that
the convergence behavior of the implicit method can be divided in two phases. In the first
phase, the solution is far from the steady state, the time steps are small yielding a diagonally
dominant matrixM . Many Newton steps are then performed during this stage but only few
GMRES inner iterations are needed to satisfy the convergence criterion (19). During the
second phase, the convergence is steep and the steady solution is reached within only a few
Newton iterations. Unlike in the first phase, the matrixM is no longer diagonally dominant
in the second phase and many inner GMRES iterations are performed to reach convergence.
The performance of the implicit method depends then on the efficiency the preconditioner
P. This second phase starts when the solution is near the steady state in our case when the
residual is approximately 10−3.

We observe in Fig. 2 that increasing the order of spatial discretizations increases the
number of nonlinear Newton steps in the first phase since more iterations are needed to
damp high frequencies. On the other hand, we note in Table I that the average number of
the inner GMRES iterations remains approximately the same for different orders of spatial
approximation on the same mesh.

It is apparent from Table I that the algorithms using block Jacobi preconditioners perform
twice as many inner GMRES iterations as those using the block LU-SGS preconditioners.
Thus, the LU-SGS preconditioner is more efficient than the Jacobi preconditioner. We note
also in Table I that only a small improvement is obtained in the average number of GMRES
iterations when applying the two-level preconditioners. As a result the performance of the
Newton–Krylov–Schwarz algorithm on the coarse mesh with the one-level preconditioners
is better than with the two-level preconditioners.

FIG. 1. 70-element mesh with fifth-order spatial discretization (top) and Mach number contours (bottom).

IMPLICIT DISCONTINUOUS GALERKIN METHOD 729

FIG. 2. Convergence history on the coarse mesh (70 elements) with the one-level and two-level block Jacobi
preconditioners (top) and the one-level and two-level block LU-SGS preconditioners (bottom). Seventh-order
(——— one-level, —◦— two-level), sixth-order (----- one-level, --◦-- two-level), fifth-order (····· one-level,···◦···
two-level). Log residual vs. CPU time (left), Log residual vs. Outer Newton iteration number (right).

The computation on the fine mesh has been performed with third- and fourth-order
spatial discretizations. Table I shows over 37% improvements in the average number of
inner GMRES iterations when using the two-level block Jacobi preconditioner. This led to
a faster convergence in CPU time for the algorithm using the two-level method as shown
in Fig. 3. For the block LU-SGS preconditioner, the improvement in the average number
of GMRES iterations with the two-level method is modest.

TABLE I

Average Number of Inner GMRES Iterations for the Subsonic Channel Flow

Using One-level and Two-level Block Jacobi and Block LU-SGS Preconditioners

on the Coarse (70 Elements) and the Fine (264 Elements) Grids

BJ1 BJ2 GS1 GS2

Order 3 (264 elements) 44.7000 26.5417 15.8571 11.9167
Order 4 (264 elements) 39.6818 24.7407 15.9583 11.7778
Order 5 (70 elements) 23.7000 17.3043 9.1364 7.8750
Order 6 (70 elements) 22.4545 17.4615 8.6800 7.6667
Order 7 (70 elements) 20.6250 17.3103 7.6667 7.2333

730 RASETARINERA AND HUSSAINI

FIG. 3. Convergence history on the fine mesh (264 elements) with the one-level and two-level block Jacobi
preconditioners (top) and the one-level and two-level block LU-SGS preconditioners (bottom). Fourth-order (—
one-level, —o— two-level), third-order (- - - one-level, - - o - - two-level). Log residual vs. CPU time (left), Log
residual vs. outer Newton iteration number (right).

Finally, we present in Fig. 4 a comparison of the convergence histories between the
implicit and the explicit algorithms on the fine and the coarse meshes. The implicit solvers
converge about 50 times faster than the explicit method.

6.2. Transonic Flow in a Convergent-Divergent Nozzle

The isentropic flow in a convergent-divergent nozzle is computed as a transonic test case.
The geometry and the mesh are presented in Fig. 5. The nozzle consists of a converging
section with a half angle of 45◦ and a diverging section with a half angle of 15◦. The
corresponding quasi-one-dimensional nozzle solution is used as initial condition.

First, the solution is computed on a mesh containing 132 elements (see Fig. 5) with
third-, fourth-, and fifth-order spatial discretizations. Figure 2 illustrates the convergence
history of the implicit method. As in the previous test case, the one-level block LU-SGS
preconditioner is more efficient than the two-level one. The improvement in the average
number of GMRES iterations is negligible when using the two-level block LU-SGS precon-
ditioner. For the block Jacobi preconditioners, the use of the two-level preconditioner led
to 30% improvement for the fifth-order scheme and to more than 40% improvement for the
third and fourth in the average number of inner GMRES iterations. This results in a faster
convergence rate in CPU time for the two-level method. Again, the results indicate that in-
creasing the order of spatial discretization increases the number of outer Newton iterations

IMPLICIT DISCONTINUOUS GALERKIN METHOD 731

FIG. 4. Convergence history of the implicit method using the two-level block Jacobi (BJ2) and the one-level
block LU-SGS (GS1) preconditioners (top), and the explicit method (bottom). (· · · · and· · o · ·) third-order method
on the fine mesh, (- - - - and - - o - -)sixth-order method on the coarse mesh.

but the average number of inner GMRES iterations remains approximately the same (see
Table II).

Next, the solution is computed on three different meshes with the same number of de-
grees of freedom. The fine mesh is obtained by dividing each element of the medium
mesh (132 elements) into four cells and the coarse mesh is obtained by gathering each
four neighboring elements of the medium mesh into one cell. The fine mesh contains
528 elements, the medium mesh 132 elements, and the coarse mesh 33 elements. They are
respectively discretized with second-, fourth-, and eighth-order methods. The number of
degrees of freedom in each mesh is then 8448. As expected we can see from Fig. 7 that
the two-level preconditioners are more efficient as the mesh is refined. The improvement
is dramatic for the block Jacobi method with a speedup of more than a factor 2 on the fine
mesh.

The comparison between the implicit and the explicit method is presented in Fig. 8.
The best performance is obtained with the Newton–Krylov–Schwarz method using the

732 RASETARINERA AND HUSSAINI

FIG. 5. Geometry and grid with fifth-order spatial discretization (top) and Mach number contours (bottom).

FIG. 6. Convergence history on the medium mesh (132 elements) with the one-level and two-level block
Jacobi preconditioners (top) and the one-level and two-level block LU-SGS preconditioners (bottom). Fifth-order
(— one-level, —o— two-level), fourth-order (- - - one-level, - - o - - two-level), third-order (· · · one-level,· · o · ·
two-level). Log residual vs. CPU time (left), Log residual vs. outer Newton iteration number (right).

IMPLICIT DISCONTINUOUS GALERKIN METHOD 733

FIG. 7. Convergence history with the one-level and two-level block Jacobi preconditioners (top) and the
one-level and two-level block LU-SGS preconditioners (bottom). Eighth-order on the coarse mesh (— one-level,
—o— two-level), fourth-order on the medium mesh (- - - one-level, - - o - - two-level), second-order on the fine
mesh (· · · · one-level,· · o · · two-level). Log residual vs. CPU time (left), Log residual vs. outer Newton iteration
number (right).

one-level LU-SGS preconditioner, which is over 50 times faster than the explicit
method.

Figures 7 and 8 show that the scheme with order 4 takes less CPU time to converge than
the scheme of order 2. This is due to the fact that the average number of inner GMRES
iterations increases as the number of elements increases while it remains approximately the
same for different orders of spatial approximation on the same mesh (see Tables I and II).

TABLE II

Average Number of Inner GMRES Iterations for the Transonic Nozzle Flow Using

One-Level and Two-Level Block Jacobi and Block LU-SGS Preconditioners on Coarse

(33 Elements), Medium (132 Elements), and Fine (528 Elements) Grids

BJ1 BJ2 GS1 GS2

Order 2 (528 elements) 60.0000 15.8889 10.4615 8.0000
Order 3 (132 elements) 22.0400 13.1481 6.6296 6.4074
Order 4 (132 elements) 20.5161 11.9706 5.7812 5.7647
Order 5 (132 elements) 17.7143 12.4634 5.7895 5.6585
Order 8 (33 elements) 10.3590 9.0465 4.4250 4.7907

734 RASETARINERA AND HUSSAINI

FIG. 8. Convergence history of the implicit method using the two-level block Jacobi (BJ2) and the one-level
block LU-SGS (GS1) preconditioners (top), and the explicit method (bottom). (· · · · and· · o · ·) second-order on
the fine mesh, (- - - - and - - o - -)fourth-order on the medium mesh, (— and –o–) eighth-order on the coarse
mesh.

The scheme with order 4 (132 elements) and the scheme with order 2 (528 elements) have
the same convergence rate in the first phase where many Newton steps are performed with
only few inner GMRES iterations. In the second phase, where superconvergence occurs,
Table II shows that the scheme with order 2 requires more inner GMRES iterations than
the scheme with order 4 which results in a slower convergence for the lower order scheme.

6.3. Subsonic Flow Over a Three-Element Airfoil

The third example computes the flow over a three-element airfoil. The grid and geometry
for a fifth-order spatial discretization scheme are shown in Fig. 9. The mesh is highly

IMPLICIT DISCONTINUOUS GALERKIN METHOD 735

FIG. 9. Geometry and grid with fifth-order spatial discretization (top). Mach number contours (bottom).

unstructured and contains 295 quadrilateral elements. The number of degrees of freedom
from the spatial discretization with a fifth-order method is 29500. The freestream condition
is set to Mach 0.2 at zero degree angle of attack.

The convergence history of the Newton–Krylov–Schwarz algorithm with different pre-
conditioners is displayed in Fig. 10. We can see from the computations that the two-level
method is much more effective than the one-level method. From Table III, we note that the
average number of inner GMRES iterations decreases by a factor 4 with the two-level block
Jacobi preconditioner and by a factor 2 with the two-level block LU-SGS preconditioner.
The two-level implicit algorithms with the block Jacobi and the block LU-SGS precon-
ditioner converge 68% and 34% faster in CPU time, respectively, than their single-level
counterparts. As in the previous test case, we note that the use of a two-level method is
necessary for the block Jacobi preconditioner when the grid contains a large number of
elements.

736 RASETARINERA AND HUSSAINI

TABLE III

Statistics for the Newton–Krylov–Schwarz Algorithm for the Subsonic Flow

Over a Three-Element Airfoil

BJ1 BJ2 GS1 GS2

Total CPU time (s) 1687.73 1004.39 1279.29 952.96
Average number of GMRES iterations 76.058 18.7040 26.0244 12.6852
Number of outer Newton iterations 68 124 81 107
Total number of iterations 5248 2338 2134 1370

FIG. 10. Convergence history of the Newton–Krylov–Schwarz algorithm using the one-level (—) and the
two-level (—o—) block Jacobi and the one-level (- - - -) and the two-level (- - o - -) block LU-SGS preconditioners
with a fifth-order spatial discretization. Log residual vs. CPU time (top), Log residual vs. outer Newton iteration
number (bottom).

IMPLICIT DISCONTINUOUS GALERKIN METHOD 737

7. CONCLUDING REMARKS

In summary, the implicit discontinuous spectral Galerkin method is applied to three
prototypical aerodynamic problems—subsonic flow in a channel with a circular bump,
transonic flow in a nozzle, and subsonic flow over a three-element airfoil. Both block Jacobi
and LU-symmetric Gauss–Seidel preconditioners are implemented. The latter is found in
general to provide a more efficient method. The convergence rate of a discontinuous spectral
Galerkin method may become slow considerably with increasing number of elements and
a two-level preconditioner is found to ameliorate the convergence rate.

For a small number of elements however, the one-level LU-SGS preconditioner performs
better than the two-level preconditioner. The increase in the number of the outer Newton
iterations with the two-level method and the overhead of the two-level LU-SGS method in
comparison with the one-level LU-SGS method lead to a larger CPU time for convergence
when used with small or moderate number of elements. However, the two-level method is
essential when the number of elements is large, and the improvement may be dramatic as
in the case of three-element airfoil.

The overall performance of the implicit version of the method is orders of magnitude
better than an explicit method. Thus, such methods appear to provide a viable alternative
to the traditional finite-volume and finite-difference methods for aerodynamic problems.
They do require more computation time per node, and this may prove advantageous in the
context of a computer’s communication speed always lagging behind its computation speed.
Furthermore, the algorithms that are required to resolve the flow physics are necessarily of
high-order accuracy. In addition to these features, their robustness and easy parallelizability
will make these methods more popular in the future.

REFERENCES

1. P. Bar-Yoseph, Space-time discontinuous finite element approximations for multidimensional nonlinear hy-
perbolic systems,Comput. Mech. 5, 145 (1989).

2. P. Bar-Yoseph and D. Elata, An efficient L2 Galerkin finite element method for multidimensional nonlinear
hyperbolic systems,Int. J. Numer. Meth. Eng. 29, 1229 (1990).

3. F. Bassi and S. Rebay, GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations,
in Discontinuous Galerkin Methods. Theory, Computation and Applications, edited by B. Cockburn, G. E.
Karniadakis and C.-W. Shu, Lecture Notes in Computational Science and Engineering (Springer-Verlag, New
York, 2000), Vol. 11, pp. 197–208.

4. P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations,SIAM J. Sci. Stat. Comp.
11, 450 (1990).

5. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Springer Series
in Computational Physics (Springer Verlag, New York, 1988).

6. B. Cockburn and C.-W. Shu, TVD Runge–Kutta local projection discontinuous Galerkin finite element method
for conservation laws II: general framework,Math. Comput. 52, 411 (1989).

7. B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin finite-element method for conservation
laws V: multidimensional systems,J. Comput. Phys. 141, 199 (1998).

8. B. Cockburn, G. E. Karniadakis, and C.-W. Shu,Discontinuous Galerkin Methods. Theory, Computation and
Applications. Lecture Notes in Computational Science and Engineering, (Springer-Verlag, New York, 2000),
Vol. 11.

9. R. Dembo, S. Eisenstat, and T. Steilhaug, Inexact Newton Methods,SIAM J. Numer. Anal. 19, 400 (1982).

10. L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for Euler simulations with unstructured meshes,
J. Comput. Phys. 84, 174 (1989).

738 RASETARINERA AND HUSSAINI

11. F. Q. Hu, M. Y. Hussaini, and P. Rasetarinera, An analysis of the discontinuous Galerkin method for wave
propagation problems,J. Comput. Phys. 151, 921 (1999).

12. A. Jameson and S. Yoon, Lower-upper implicit schemes with multiples grids for the Euler equations,AIAA
J. 25, 7 (1987).

13. D. E. Keyes, Aerodynamic applications of Newton–Krylov–Schwarz solvers, inProceedings of the 14th
International Conference on Numerical Methods in Fluid Dynamics, edited by S. M. Deshpande, Lecture
Notes in Physics (Springer-Verlag, Berlin, 1995), Vol. 453, pp. 1–20.

14. H. Lomax and J. L. Steger, Relaxation methods in fluid mechanics,Ann. Rev. Fluid Mech. 7, 63 (1975).

15. H. Luo, J. D. Baum, and R. L¨ohner, A fast, matrix-free implicit method for compressible flows on unstructured
grids,J. Comput. Phys. 146, 664 (1998).

16. W. Mulder and B. V. Leer, Experiments with implicit upwind methods for the Euler equations,J. Comput.
Phys. 59, 232 (1985).

17. P. Rasetarinera, M. Y. Hussaini, and F. Q. Hu, Some remarks on the accuracy of a discontinuous Galerkin
method, inDiscontinuous Galerkin Methods. Theory, Computation and Applications, edited by B. Cockburn,
G. E. Karniadakis, and C.-W. Shu, Lecture Notes in Computational Science and Engineering (Springer-Verlag,
New York, 2000), Vol. 11, pp. 407–412.

18. P. Rasetarinera, D. Kopriva, and M. Y. Hussaini, Discontinuous spectral element solution of acoustic radiation
from thin airfoils,AIAA J., in press.

19. W. H. Reed and T. R. Hill,Triangular Mesh Methods for the Neutron Transport Equation, Technical Report
LA-UR-73-479 (Los Alamos Scientific Laboratory, 1973).

20. Y. Saad and M. H. Schultz, GMRES: A genearlized minimal residual algorithm for solving nonsymmetric
linear systems,SIAM J. Sci. Stat. Comp. 7, 865 (1986).

21. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,
J. Comput. Phys. 77, 439 (1988).

22. J. Steger and R. F. Warming, Flux vector splitting of the inviscid gas-dynamic equations with applications to
the finite difference methods,J. Comput. Phys. 40, 263 (1981).

	1. INTRODUCTION
	2. DISCONTINUOUS GALERKIN METHOD
	3. IMPLICIT TIME DISCRETIZATION
	4. KRYLOV–SCHWARZ
	5. SPACE DISCRETIZATION
	6. NUMERICAL RESULTS
	FIG. 1.
	FIG. 2.
	TABLE I
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	TABLE II
	FIG. 8.
	FIG. 9.
	TABLE III
	FIG. 10.

	7. CONCLUDING REMARKS
	REFERENCES

